Все о сварке

С какой целью применяют осциллятор при сварке неплавящимся электродом


Большая Энциклопедия Нефти и Газа

Cтраница 2

Схема сварки в среде защитных газов.  [16]

Сварку неплавящимся электродом обычно осуществляют на переменном токе с применением осцилляторов или на постоянном токе обратной полярности. Такую схему включения применяют при сварке алюминиевых сплавов, когда за счет эффекта катодного распыления происходит разрушение поверхностных окисных пленок.  [17]

Сварку неплавящимся электродом обычно ведут на переменном токе с применением осцилляторов или на постоянном токе обратной полярности. Такую схему включения применяют при сварке алюминиевых сплавов, когда за счет эффекта катодного распыления происходит разрушение поверхностных окисных пленок. В зону пламени дуги 5 подается присадочный пруток 2, изготовленный из материала, близкого по химическому составу к основному металлу. Металлический пруток и основной металл образуют ванну 6 расплавленного металла.  [18]

Сварка в углекислом газе возможна на переменном токе с применением осциллятора.  [19]

Схема сварки в среде защитных газов.  [20]

Сварку неплавящимся электродом обычно осуществляют на переменном токе с применением осцилляторов или на постоянном токе обратной полярности. Такую схему включения применяют при сварке алюминиевых сплавов, когда за счет эффекта катодного распыления происходит разрушение поверхностных окисных пленок.  [21]

Сварка обычно производится на постоянном токе, однако при применении осциллятора может быть использован и переменный ток.  [22]

При питании дуга от трансформатора с повышенным напряжением холостого хода применение осциллятора обеспечивает безопасность выполнения сварки.  [24]

При питании дуги от трансформатора с повышенным напряжением холостого хода применение осциллятора обеспечивает безопасность выполнения сварки.  [25]

При сварке на переменном токе для повышения стабильности дуги рекомендуется применение осцилляторов.  [26]

Для возбуждения дуги без закорачивания электрода на изделие и для повышения стабильности горения ее допускается применение осцилляторов.  [27]

Для возбуждения дуги без предварительного закорачивания электрода на изделие и для повышения стабильности горения ее допускается применение осцилляторов и генераторов токов повышенной частоты. Конструкция осциллятора должна полностью исключать возможность электрического соединения цепи низкой частоты с цепью повышенной частоты. Должна быть предусмотрена блокировка, исключающая возможность включения осциллятора при снятом защитном кожухе.  [28]

Сварка неплавким электродом выполняется на переменном токе при напряжении холостого хода 85 - 90 в с применением осциллятора или баластного реостата. Электроды вольфрамовые диаметром от 1 до 8 мм. Сварка может быть как ручная, так и механизированная. При механизированной сварке толстого металла применяют вольфрамовые электроды диаметром до 20 мм и присадочные прутки диаметром до 8 мм.  [29]

По питающим электросетям помехи от электросварочного оборудования распространяются на значительно большие расстояния, чем путем излучения, за исключением дуговой сварки переменным током с применением осциллятора, помехи от которого могут распространяться излучением на несколько километров и охватывают весь радиовещательный диапазон частот.  [30]

Страницы:      1    2    3    4

www.ngpedia.ru

Осциллятор устройства для сварки неплавящимся электродом в защитных газах и разрядник для него

Изобретение относится к сварочному оборудованию, в частности к осцилляторам и разрядникам для последних. Цель изобретения повышение эффективности и надежности поджига сварочной дуги. Осциллятор содержит коммутатор 1 и релаксатор 4 с накопительной емкостью 3, подключенный к первичной обмотке трансформатора, а ко вторичной обмотке подключен высоковольтный контур на разряднике 5. Новым в осцилляторе является выполнение разрядника, из двух последовательных разрядных промежутков с общим пассивным электродом, к которому подключена емкость высоковольтного контура. 2 с. п. ф-лы, 3 ил.

Изобретение относится к машиностроению в области сварочного оборудования, в частности к осцилляторам и разрядникам для них.

Целью изобретения является повышение эффективности и надежности поджига дуги.

На фиг. 1 приведена схема осциллятора; на фиг. 2 вид разрядника, разрез; на фиг. 3 то же, вид сверху.

На R1, VD1, C, динисторе VD2 собран коммутатор 1, а на накопительном конденсаторе 2, обмотке L1 трансформатора 3 и тиристоре VS1 собран релаксатор 4, который коммутирует накопительную емкость конденсатора СН2, разряжая ее на первичную обмотку L1 трансформатора 3. Ко вторичной обмотке L2 трансформатора 3 подключен разрядник 5, состоящий из разрядных промежутков F1 и F2, который с высоковольным конденсатором 6 и индуктивностью обмотки L2 трансформатора 3 составляет высоковольтный контур, к выводам которого подключаются цепи горелки сварочного аппарата.

Разрядник (см. фиг. 2) содержит корпус 7 из электроизоляционного материала. В верхней части корпуса укреплены на резьбе электроды 8 и 9, что позволяет перемещать их по оси при настройке разрядника с помощью гаек 10 и 11, которые служат и фиксаторами. Между этими электродами в центре корпуса закреплен пассивный электрод 12 на перегородке 13 из изоляционного материала. Электрод 12 электрически соединен с высоковольтным конденсатором 6, другой вывод которого подсоединен к выходной клемме 14.

Осциллятор с разрядником устройства для сварки неплавящимся электродом в защитных газах работает следующим образом.

При подключении питающих напряжений к схеме конденсаторы С в блоке 1 и Сн в блоке 4 начинают заряжаться. Динистор VD2 и тиристор VS1 заперты. Как только напряжение на конденсаторе С достигнет порога пробоя динистора VD2, напряжение на конденсаторе оказывается приложено к управляющему электроду тиристора VS1. Он открывается и накопленная энергия конденсатора перетекает в индуктивность L1. В обмотках L1 и L2 возникают импульсы напряжения, вызывающие в контуре L2, Cк2 разрядника F1 затухающие колебания. В зависимости от настройки разрядника F2 через него проходят лишь несколько первых колебаний, остальные с меньшей амплитудой не вызывают пробоя разрядника F2. Таким образом, на горелку попадают импульсы примерно равной амплитуды и длительности, т. е. практически одинаковой энергии. Это создает весьма благоприятные условия для развития устойчивого искрового разряда, а следовательно, однозначного, без пропуска создания дежурного и рабочего дугового разряда. Подбирая угол отсечки напряжения на управляющем электроде тиристора путем регулировки скорости заряда конденсатора С, можно добиться неизменности разрядного напряжения и тока осциллятора, что обеспечивает высокую стабильность и надежность поджига дугового разряда в горелке сварочного аппарата.

Настройка разрядника осуществляется путем регулирования длины разрядных промежутков между пассивным и активным электродами. Контроль операции ведется по осциллограмме напряжений на эквиваленте дуги активном сопротивлении. Регулировка считается достаточной, когда на эквиваленте получаются два-три основных явно выраженных импульса затухающих колебаний.

При осуществлении сварки в автоматическом режиме ни разу не наблюдались пропуски возникновения рабочей дуги после остановки для перехода на другой режим или другую операцию. Все это позволяет повысить качество и высокую однородность сварного шва, устойчивость процесса сварки.

1. Осциллятор устройства для сварки неплавящимся электродом в защитных газах, содержащий коммутатор, релаксатор с накопительным конденсатором, подключенный к первичной обмотке трансформатора, вторичная обмотка которого одним выводом подключена к разрядному электроду разрядника, пассивный электрод которого через конденсатор разрядника подключен к выходу осциллятора, отличающийся тем, что разрядник выполнен с дополнительным разрядным электродом, подключенным к другому выходу осциллятора, другой вывод вторичной обмотки подключен к конденсатору разрядника.

2. Разрядник осциллятора устройства для сварки неплавящимся электродом в защитных газах, содержащий корпус, пассивный электрод и разрядный электрод, установленный в корпусе с возможностью перемещения, отличающийся тем, что в него введены конденсатор и дополнительный разрядный электрод, установленный в корпусе с возможностью перемещения диаметрально противоположно основному относительно оси пассивного электрода, при этом конденсатор и пассивный электрод установлены неподвижно в корпусе, а оба разрядных электрода снабжены фиксаторами их положения.

Рисунок 1, Рисунок 2, Рисунок 3

www.findpatent.ru

Осцилляторы и импульсные возбудители дуги

Осциллятор — это устройство, преобразующее ток промышленной частоты низкого напряжения в ток высокой частоты (150—500 тыс. Гц) и высокого напряжения (2000—6000 В), наложение которого на сварочную цепь облегчает возбуждение и стабилизирует дугу при сварке.

Основное применение осцилляторы нашли при аргно-дуговой сварке переменным током неплавящимся электродом металлов малой толщины и при сварке электродами с низкими ионизирующими свойствами покрытия. Принципиальная электрическая схема осциллятора ОСПЗ-2М показана на рис. 1.

Осциллятор состоит из колебательного контура (конденсатора С5, в качестве индукционной катушки используется подвижная обмотка трансформатора ВЧТ и разрядника Р) и двух индуктивных дроссельных катушек Др1 и Др2, повышающего трансформатора ПТ, высокочастотного трансформатора ВЧТ.

Колебательный контур генерирует ток высокой частоты и связан со сварочной цепью индуктивно через высокочастотный трансформатор, выводы вторичных обмоток которого присоединяются: один к заземленному зажиму выводной панели, другой — через конденсатор С6 и предохранитель Пр2 ко второму зажиму. Для защиты сварщика от поражения электрическим током в цепь включен конденсатор С6, сопротивление которого препятствует прохождению тока высокого напряжения и низкой частоты в сварочную цепь. На случай пробоя конденсатора С6 в цепь включен плавкий предохранитель Пр2. Осциллятор ОСПЗ-2М рассчитан на подключение непосредственно в двухфазную или однофазную сеть напряжением 220 В.

   
Рис. 1. Принципиальная электрическая схема осициллятора ОСПЗ-2М: СТ — сварочный трансформатор, Пр1, Пр2 — предохранители, Др1, Др2 — дроссели, С1 — С6 — конденсаторы, ПТ — повышающий трансформатор, ВЧТ — высокочастотный трансформатор, Р - разрядник  Рис. 2. Схема включения осциллятора М-3 и ОС-1 в сварочную цепь: Тр1 — трансформатор сварочный, Др — дроссель, Тр2 — повышающий трансформатор осциллятора, Р — разрядник, С1 — конденсатор контура, С2 — защитный конденсатор контура, L1 — катушка самоиндукции, L2 — катушка связи 

При нормальной работе осциллятор равномерно потрескивает, и за счет высокого напряжения происходит пробой зазора искрового разрядника. Величина искрового зазора должна быть 1,5—2 мм, которая регулируется сжатием электродов регулировочным винтом. Напряжение на элементах схемы осциллятора достигает нескольких тысяч вольт, поэтому регулирование необходимо выполнять при отключенном осцилляторе.

Осциллятор необходимо зарегистрировать в местных органах инспекции электросвязи; при эксплуатации следить за его правильным присоединением к силовой и сварочной цепи, а также за исправным состоянием контактов; работать при надетом кожухе; кожух снимать только при осмотре или ремонте и при отсоединенной сети; следить за исправным состоянием рабочих поверхностей разрядника, а при появлении нагара — зачистить их наждачной бумагой. Осцилляторы, у которых первичное напряжение 65 В, подключать к вторичным зажимам сварочных трансформаторов типа ТС, СТН, ТСД, СТАН не рекомендуется, так как в этом случае напряжение в цепи при сварке понижается. Для питания осциллятора нужно применять силовой трансформатор, имеющий вторичное напряжение 65—70 В.

Схема подключения осцилляторов М-3 и ОС-1 к сварочному трансформатору типа СТЭ показана на рис.2. Технические характеристики осцилляторов приведен в таблице.

Технические характеристики осцилляторов

Тип Первичное напряжение, В Вторичное напряжение холостого хода, В Потребляемая мощность, Вт Габаритные размеры, мм Масса, кг
М-3 ОС-1 ОСЦН ТУ-2 ТУ-7

ТУ-177 ОСПЗ-2М

40 — 65 65 200 65; 220 65; 220 65; 220

220

2500 2500 2300 3700 1500 2500

6000

150 130 400 225 1000 400

44

350 x 240 x 290 315 x 215 x 260 390 x 270 x 310 390 x 270 x 350 390 x 270 x 350 390 x 270 x 350

250 х 170 х 110

15 15 35 20 25 20

6,5

Импульсные возбудители дуги

Это такие устройства, которые служат для подачи синхронизированных импульсов повышенного напряжения на сварочную дугу переменного тока в момент изменения полярности. Благодаря этому значительно облегчается повторное зажигание дуги, что позволяет снизить напряжение холостого хода трансформатора до 40—50 В.

Импульсные возбудители применяют только для дуговой сварки в среде защитных газов неплавящимся электродом. Возбудители с высокой стороны подключаются параллельно к сети питания трансформатора (380 В), а на выходе — параллельно дуге.

Мощные возбудители последовательного включения применяют для сварки под флюсом.

Импульсные возбудители дуги более устойчивы в работе, чем осцилляторы, они не создают радиопомех, но из-за недостаточного напряжения (200—300 В) не обеспечивают зажигания дуги без соприкосновения электрода с изделием. Возможны также случаи комбинированного применения осциллятора для начального зажигания дуги и импульсного возбудителя для поддержания ее последующего стабильного горения.

Стабилизатор сварочной дуги

Для повышения производительности ручной дуговой сварки и экономичного использования электроэнергии создан стабилизатор сварочной дуги СД-2. Стабилизатор поддерживает устойчивое горение сварочной дуги при сварке переменным током плавящимся электродом путем подачи на дугу в начале каждого периода импульса напряжения.

Стабилизатор расширяет технологические возможности сварочного трансформатора и позволяет выполнять сварку на переменном токе электродами УОНИ, ручную дуговую сварку неплавящимся электродом изделий из легированных сталей и алюминиевых сплавов.

Схема внешних электрических соединений стабилизатора показана на рис. 3, а, осциллограмма стабилизирующего импульса — на рис. 3, б.

Сварка c применением стабилизатора позволяет экономичнее использовать электроэнергию, расширить технологические возможности применения сварочного трансформатора, уменьшить эксплуатационные расходы, ликвидировать магнитное дутье.

Сварочное устройство «Разряд-250». Это устройство разработано   на   базе   сварочного   трансформатора   ТСМ-250   и стабилизатора сварочной дуги, выдающего импульсы частотой 100 Гц.

Функциональная схема сварочного устройства и осциллограмма напряжения холостого хода на выходе устройства показаны на рис. 4, а, б.

   

Рис. 3. Схема внешних электрических соединений стабилизатора и осциллограмма стабилизирующего импульса: а — схема: 1 — стабилизатор, 2 — трансформатор варочный, 3 — электрод, 4 — изделие; б — осцилограмма: 1 — стабилизирующий импульс, 2 — напряжение на вторичной обмотке трансформатора 

Рис. 4. Сварочное устройство «Разряд-250»: а — схема устройства; б — осциллограмма напряжения холостого хода на выходе устройства 

Устройство «Разряд-250» предназначено для ручной дуговой сварки переменным током плавящимися электродами любого типа, в том числе предназначенными для сварки на постоянном токе. Устройство может использоваться при сварке неплавящимися электродами, например, при сварке алюминия.

Устойчивое горение дуги обеспечивается подачей на дугу в начале каждой половины периода переменного напряжения сварочного трансформатора импульса напряжения прямой полярности, т. е. совпадающего с полярностью указанного напряжения. 

build.novosibdom.ru

Большая Энциклопедия Нефти и Газа

Cтраница 3

Горелка предназначена для ручной дуговой сварки постоянным током неплавящимся электродом в среде защитных газов меди, алюминия, нержавеющих сталей и других металлов толщиной до 15 мм с применением осциллятора. Горелка может быть использована для сварки переменным током.  [31]

Импульсные возбудители вследствие синхронизированной подачи импульсов обеспечнвнют более надежное повторное зажигание дуги по сравнению с осцилляторами Кроме того, они не вызывают значительных радиопомех, как это имеет место в случае применения осцилляторов.  [32]

В настоящее время электроды в большинстве случаев обеспечивают достаточную устойчивость дуги. Применение осцилляторов сократилось также и в связи с усложнением схемы при осцилляторах, наличием в осцилляторе разрядника, требующего квалифицированного ухода, необходимостью применения проводов с изоляцией повышенной прочности на пути высокочастотного тока; кроме того, осцилляторы создают помехи радиоприему.  [34]

Осциллятор должен быть простым, удобным и надежным в эксплоатации. Связанное с применением осцилляторов усложнение схемы устройства и обслуживания сварочного поста является причиной слабого внедрения их в сварочную технику.  [35]

Принципиальная электрическая схема осциллятора.  [36]

Это позволяет успешно вести сварку без применения осцилляторов.  [37]

Электроды рекомендуются для сварки в нижнем положении, но возможна также сварка в вертикальном и потолочном положениях. При работе на переменном токе необходимо применение осциллятора. Существуют разновидности электродов УОНИ-13, в обмазку которых добавляют сильные ионизаторы, что дает возможность работать на переменном токе без осциллятора. Качество сварки электродами УОНИ-13 следует признать выдающимся, показатели механических свойств сварного шва и наплавленного металла получаются часто выше показателей основного металла.  [38]

Ручная дуговая сварка неплавящимся электродом является лучшим способом для сварки изделий из тонколистового металла, так как обеспечивает - минимальную деформацию изделия и высокое качество сварного шва. Сварку ведут на переменном токе с применением осцилляторов. С помощью переменного тока разрушается оксидная пленка, что достигается катодным распылением в моменты, когда катодом является изделие.  [39]

Одной из наиболее интересных областей совместного использования циклов и других более традиционных методов технического анализа является привязка осцилляторов к текущим циклам. Мы уже рассматривали основные принципы и особенности применения осцилляторов в техническом анализе в одной из предыдущих глав нашей книги и показали, как с их помощью можно выявлять области перекупленное и перепроданности, а также расхождения. Специалисты полагают, что эффективность осцилляторов можно значительно повысить, если периоды времени, используемые для их расчета, определять с учетом протяженности действующих на рынке циклов.  [41]

Сварку металла толщиной 1 5 - 3 мм следует вести на постоянном токе обратной полярности. На переменном токе сварка возможна только с применением осцилляторов. Сварка выполняется с периодическими замыканиями дуги через расплавленные капли электродного металла. Основной металл проплавляется на всю глубину и даже немного протекает на обратную сторону.  [42]

Дополнительное экранирование помех, излучаемых большинством электросварочных агрегатов и устройств, обычно не требуется, так как их корпус является достаточным экраном. В случае дуговой сварки переменным током с применением осциллятора необходимо экранировать все помещение ( или специальную кабину), где производится сварка, а в питающую электросеть следует включить двухзвен-ный индуктивно-емкостный фильтр, размещенный в отдельном экране, расположенном на внешней стороне экранированного помещения.  [43]

В качестве источников тока при сварке в защитных газах используют сварочные генераторы с жесткой или возрастающей характеристикой и специальные выпрямители переменного тока. Возможна также сварка переменным током от трансформаторов с применением осциллятора. Жесткие или возрастающие характеристики источников питания требуются потому, что дуга, горящая в защитных газах при больших плотностях тока ( малые диаметры электродной проволоки), имеет возрастающую вольт-амперную характеристику.  [44]

Страницы:      1    2    3    4

www.ngpedia.ru


Смотрите также