Все о сварке

Сварка пластмасс


Сварка пластмасс

Сварка пластмасс – это  технологический процесс получения неразъемного соединения элементов конструкции посредством диффузионно-реологического или химического взаимодействия макромолекул полимеров, в результате которого между соединяемыми поверхностями исчезает граница раздела и образуется структурный переход от одного полимера к другому.

 Классификация способов сварки пластмасс

    По механизму процесса сварку пластмасс можно разделить на диффузионную и химическую; по методам активирования процесса — на тепловую сварку, сварку растворителями и сварку комбинированием нагрева и действия растворителей (рис. 1).

Сварка пластмасс растворителями

При сварке с растворителями необходимая подвижность молекулярных цепей создается за счет набухания контактирующих поверхностей в растворителе или смеси растворителей. Подразделяется она на сварку чистым растворителем (или смесью растворителей), лаковой композицией (раствором полимера в растворителе) и полимеризующейся композицией (раствором полимера в мономере).

 Тепловая сварка пластмасс

Тепловая сварка имеет наибольшее число разновидностей. Классифицировать ее можно по различным критериям:

Однако наиболее точно отражает современное состояние технологии сварки пластмасс классификация разновидностей тепловой сварки в зависимости от источника нагрева.

При этом выделяют две группы сварки: с использованием внешнего теплоносителя и с генерированием тепла внутри свариваемого материала за счет преобразования различных видов энергии.

 Сварка пластмасс с использованием внешнего теплоносителя

Группа способов сварки пластмасс с использованием внешнего теплоносителя подразделяется на сварку нагретым газом, нагретым инструментом и расплавом.

Сварка нагретым газом

Сварка нагретым газом производится путем одновременного разогрева свариваемых изделий струей горячего газа-теплоносителя, нагреваемого в специальном устройстве. Сварку нагретым газом выполняют с применением присадочного материала и без него, вручную или с использованием специальных приспособлений для механизации процесса сварки. Применяется присадочный материал в виде прутков с различной формой сечения. При сварке по классической схеме нагревательное устройство совершает колебательные движения в плоскости, образованной направлением шва и осью присадочного прутка. Сварочный пруток прижимают и удерживают рукой, если он достаточно жесткий или при помощи ролика, если пруток мягкий. Применяя специальные насадки на нагревательное устройство, обеспечивают одновременный подогрев свариваемых кромок и прутка, при этом пруток втягивается в отверстие насадки при перемещении устройства вручную вдоль шва и прижимается к кромкам выступом на насадке. Сварка без присадочного материала может производиться с подводом тепла непосредственно к свариваемым поверхностям (прямой метод) или с подводом тепла к внешней поверхности деталей (косвенный метод).

Сварка нагретым инструментом

Сварка нагретым инструментом основана на оплавлении поверхностей сварки путем их прямого соприкосновения с нагреваемым инструментом. Подразделяется на сварку инструментом, удаляемым из зоны сварного шва (с подводом тепла как с внешней стороны деталей, так  и непосредственно к соединяемым поверхностям), и сварку элементом, остающимся в сварном шве.

При сварке косвенным методом нагретый инструмент соприкасается с внешними поверхностями соединяемых деталей, а тепло передается к перекрывающим друг друга свариваемым поверхностям за счет теплопроводности свариваемого материала. В настоящее время нашли применение ленточная, роликовая, прессовая и термоимпульсная сварка. При ленточной сварке для нагрева свариваемых изделий и создания давления используется нагретый инструмент в виде ленты, а при роликовой – в виде ролика. При прессовой сварке для создания необходимого сварочного  давления  применяются сварочные прессы, позволяющие осуществить шаговую сварку. При термоимпульсной сварке используют малоинерционный нагреватель (лента или проволока), по которому периодически пропускают электрический ток; после отключения электроэнергии сварной шов быстро охлаждается.

Из применяемых способов сварки с подводом тепла к соединяемым поверхностям известны сварки:

При стыковой  и раструбной сварке после оплавления свариваемых поверхностей изделия разводятся, инструмент убирается, а оплавляемые поверхности соединяются под небольшим давлением и свариваются.  При стыковой сварке соединяются торцы изделий, а в качестве нагревательного инструмента применяется плоский  или профилированный диск (кольцо).

При раструбной сварке соединяются внутренняя поверхность раструба и наружная поверхность трубы, а нагревательный инструмент имеет два рабочих элемента: гильзу для оплавления наружной поверхности конца трубы и дорн для оплавления внутренней поверхности раструба.

 Сварку нахлесточных соединений можно осуществлять одновременным нагревом соединяемых поверхностей по всея длине, а также, перемещая инструмент или свариваемые изделия. Наибольшее распространение получил способ сварки с механизированной подачей свариваемых изделий и неподвижным нагревательным инструментом.

  Из способов сварки элементом, остающимся в сварном шве, практическое применение нашли сварка электросопротивлением и индукционная сварка. Сварка электросопротивлением основана на применении закладных нагревательных элементов с высоким электрическим сопротивлением. Закладные элементы в виде сетки или спирали вводятся между соединяемыми поверхностями. При пропускании по закладному элементу электрического тока соединяемые поверхности оплавляются.

   При индукционной сварке нагрев закладного элемента происходит в электромагнитном высокочастотном поле, а в качестве нагревательного элемента используются металлические вкладыши или порошки оксидов металлов.

Сварка пластмасс расплавом

  Сварка расплавом основана на использовании тепла расплавленного присадочного материала, подаваемого между соединяемыми поверхностями и передающего часть своего тепла материалу соединяемых изделий, что ведет к его плавлению и получению неразъемного соединения. Подразделяется на сварку экструдируемой присадкой, расплавленным прутком и литьем под давлением, которые могут выполняться как с предварительным подогревом свариваемых поверхностей нагретым газом или теплоотдачей от мундштука сварочного устройства, так и без подогрева.

 При сварке экструдируемой присадкой (экструзионной сварке) расплав получается с помощью экструдера, обеспечивающего непрерывную подачу расплава, а в качестве исходного сырья используется гранулированный материал. При сварке расплавленным прутком расплав получается из присадочного прутка путем его нагрева в устройствах прямоточного типа, откуда расплав выдавливается непрерывно поступающим еще не нагретым присадочным прутком, который сматывается с бухты и подается в нагревательный цилиндр с помощью специальных тянущих роликов. При сварке литьем под давлением для получения расплавленного присадочного материала применяются литьевые машины.

 Сварка пластмасс с генерированием тепла внутри свариваемого материала

 Группа способов сварки пластмасс с генерированием тепла внутри свариваемого материала путем преобразования различных видов энергии подразделяется на сварку трением, сварку ультразвуковую, сварку высокочастотную и сварку излучением.

Сварка пластмасс трением

  Сварка трением основана на получении тепловой энергии для оплавления свариваемых поверхностей за счет трения. Очень низкая теплопроводность, характерная для термопластов, способствует сохранению тепла лишь в зоне трущихся поверхностей, в то время как температура всего изделия остается практически неизменной. Разделяется на сварку вращением (вращение соединяемых деталей; вращение промежуточных элементов) и вибротрением.

Ультразвуковая сварка пластмасс

   Ультразвуковая сварка основывается на нагреве свариваемых поверхностей до температуры размягчения в результате превращения энергии колебаний ультразвуковой частоты в тепловую энергию, при этом механические колебания ультразвуковой частоты и давление действуют по одной линии, перпендикулярно к соединяемым поверхностям. В зависимости от взаимного перемещения инструмента и деталей подразделяется на прессовую сварку (точечная, прямошовная, контурная) и роликовую сварку (сварка непрерывным и прерывистым швом). Ультразвуковая сварка может классифицироваться также и по другим признакам: в зависимости от способа подведения энергии, наличия присадочного материала, а также в зависимости от способа дозирования энергии.

Высокочастотная сварка пластмасс

 Высокочастотная сварка пластмасс основана на диэлектрическом нагреве материала в высокочастотном электромагнитном поле в результате преобразования электрической энергии в тепловую. В зависимости от схемы взаимного перемещения инструмента и свариваемых изделий высокочастотная сварка подразделяется на прессовую и роликовую. Может выполняться в основном поле и в поле рассеивания с нагревом соединяемого материала или материала прокладок, располагаемых как снаружи свариваемых деталей, так и между ними.

 Сварка пластмасс излучением

Из разновидностей сварки излучением, отличающихся друг от друга источником и характером излучения, используется световая сварка с применением и без применения присадочного материала, сварка лазерная и сварка инфракрасном излучением с подводом тепла непосредственно к соединяемым поверхностям (прямой метод) или к внешней поверхности соединяемых изделий (косвенный метод). Более широко применяется сварка инфракрасным излучением, которая основывается на свойстве термопластичных материалов поглощать падающие на них инфракрасные лучи и превращать электромагнитную энергию в тепловую.

Список литературы: Зайцев К.И., Мацюк Л.Н. Сварка пластмасс.- М.: Машиностроение,1978.-222с. Комаров Г.В. Способы соединения деталей из пластических масс.- М.: Химия,1979.-288с.

Шестопал А.Н., Шишкин В.А., Новиков В.А Способы соединения элементов конструкций из листовых полимерных материалов.- К.: О-во «Знание» УССР,1982.-31с.

Автор: Шестопал А.Н., Васильев Ю.С., Минеев Э.А. и др Источник: Справочник по сварке и склеиванию пластмасс Дата в источнике: 1986 год

mplast.by

Сварка пластмасс

Подробности Подробности Опубликовано 25.05.2012 15:45 Просмотров: 15386

В настоящее время широко используются различные пластмассы. Обладая целым рядом ценных свойств (достаточная прочность, антикоррозионность, стойкость против химически агрессивных сред, теплостойкость и др.), пластмассы получают большое применение в самых различных отраслях народного хозяйства не только как заменители дефицитных материалов, но и как основные конструкционные материалы.

Основные виды пластмасс, применяемые в технике, следующие:

Фенопласты - пластические материалы на основе фенолоальдегидных смол. В зависимости от соотношения фенола и альдегида, а также технологии изготовления получают либо термореактивные (резольные смолы), либо термопластические (новолачные смолы) материалы. Важной особенностью фенолоальдегидных смол является их способность в сочетании с различными наполнителями образовывать пластмассы с повышенными прочностными, диэлектрическими, антикоррозионными и другими свойствами. В качестве наполнителей применяют порошкообразные, волокнистые и слоистые материалы. ГОСТ 5689-73 предусматривает фенопласты общетехнического назначения, электроизоляционные, жаростойкие, волокнистые, фрикционные и др. Детали из фенопластов изготовляют методом горячего прессования при температурах 150 ... 200° С и давлении ~15 ... 120 МПа (150 ... 1200 кгс/см2). При этом получают готовые изделия, не требующие механической обработки. Фенопласты из резольной смолы с порошкообразным наполнителем широко применяют в промышленности. Например, для изготовления кислотостойких труб, ванн и деталей коммуникаций используют ораолит (наполнитель-асбест, кварцевый песок или графит). Для получения изделий общетехнического назначения в качестве наполнителя применяют древесную муку. Большое количество деталей радиотехнических изделий, электронной аппаратуры и электротехнических приборов успешно изготовляют из фенопластов с различными порошкообразными наполнителями.

Из материалов с волокнистым наполнителем большое применение получили волокниты, текстолит-крошка и стекловолокнит. Они применяются для изготовления деталей, работающих на изгиб и кручение и требующих хороших механических и антифрикционных свойств (шестерни, втулки, ролики, кулачки, вкладыши подшипников и др.). Из слоистых пластиков в промышленности большое распространение получили текстолит (наполнителем служит хлопчатобумажная ткань), древесные слоистые пластики ДСП (наполнитель-древесный шпон) и гетинакс (наполнитель - сульфатная бумага). Эти пластмассы обладают большей прочностью, чем волокнистые. Особенно высокой прочностью обладает текстолит. Его применяют для изготовления шестерен, подшипников, вкладышей и других нагруженных деталей. ДСП используют в машиностроении как конструкционный и антифрикционный материал.

Гетинакс используют в качестве электроизоляционного материала для деталей электрооборудования.

Аминопласты - термореактивные пластические материалы на основе карбамидно-формальдегидных или меламино-формальдегидных смол. Они бесцветны, прозрачны и могут быть окрашены в любые (особенно светлые) тона с помощью красителей. В качестве наполнителей применяют сульфидную целлюлозу (аминопласт, меланит), хлопковую целлюлозу (мелаволокнит), асбест, тальк и др. Изделия из аминопластов получают методами горячего и холодного прессования при различных режимах.

Например, при изготовлении деталей из аминопласта температура прессования 135... 145° С, давление 10,5 ... 42 МПа (105 ... 420 кгс/см2), время выдержки 1 мин на 1 мм толщины изделия. Аминопласты применяют, главным образом, для изготовления электроарматуры, радиодеталей, отделки магазинов, ателье, кают пароходов, железнодорожных вагонов и т. д. Большое распространение получили аминопласты при изготовлении предметов народного потребления (посуда, канцелярские и галантерейные товары и др.).

Полиэтилен - высокомолекулярный продукт полимеризации этилена. Он является кристаллическим полимером со степенью кристаллизации от 55 до 92% (в зависимости от метода получения). Полиэтилен-термопластичный материал. Изделия из него могут быть изготовлены методом литья (под давлением, центробежным литьем), штамповкой (при температуре 120 ... 135° С) и прессованием. Он обладает высокой химической стойкостью к агрессивным средам и является хорошим диэлектриком. Применяется при изготовлении подводных, силовых и радиочастотных кабелей в качестве изоляции. Большое применение получил полиэтилен при изготовлении различного оборудования химической промышленности методом прессования и сварки (трубы, цистерны, плиты, фитинги, профили, тонкостенные детали и др.)

Винипласт - жесткий материал, получаемый путем обработки непластифицированного поливинилхлорида со стабилизаторами и смазывающими веществами при температуре 160 ... 180° С. Он обладает большой прочностью, твердостью, хорошими диэлектрическими свойствами и высокой химической стойкостью. Винипласт легко подвергается различной механической обработке, сварке, склеиванию. Винипласт получил большое применение в различных отраслях народного хозяства, особенно в химической промышленности. Из винипласта изготовляют трубы, вентили, краны, фитинги. Винипластовые пленки применяют для футеровки металлической аппаратуры, электролизных ванн, изготовления различного химического и лабораторного оборудования.

Полистирол - продукт полимеризации стирола. Легко перерабатывается в изделия, как и обычные термопласты. Он отличается очень хорошими диэлектрическими свойствами, прозрачен, водостоек, морозостоек. Недостатками полистирола являются низкая теплостойкость, горючесть и хрупкость. Полистирол служит материалом для изготовления радио-и электроаппаратуры, высокочастотных приборов и химической аппаратуры. Его применяют также для изготовления электроизоляционных пленок, нитей и упаковочной пленки. Полиакрилаты - группа полимеров на основе производных акриловой и метакриловой кислот. Они производятся путем полимеризации мономерных эфиров. Наибольшее применение получили листовые акриловые материалы (органическое стекло различных марок). Кроме того, выпускают заготовки в виде стержней, труб, листов и материалов для изготовления деталей прессованием или литьем под давлением.

Органическое стекло ПММА - полиметилметакрилат - отличается высокой светопроницаемостью, удовлетворительными прочностью и твердостью. Важной особенностью органического стекла является его способность почти полностью пропускать ультрафиолетовые лучи. Следует также отметить хорошие технологические свойства: обрабатываемость сверлением, фрезерованием, штамповкой, сваркой. Некоторые марки органического стекла перерабатывают в изделия литьем под давлением. Применяют органическое стекло для остекления, изготовления изделий технического назначения в приборостроении, машиностроении и других отраслях промышленности. Полихлорвиниловый пластикат получают из поливинилхлорида, наполнителей и красителей. Наполнители повышают механическую прочность пластиката и снижают его стоимость. Для повышения гибкости и пластичности, а также хорошего смещения составляющих в смесь дополнительно вводят до 30 ... 60% пластификатора (дибутилфталата). Обработкой такой смеси на вальцах получают мягкий листовой материал толщиной от 0,1 до нескольких миллиметров.

Пластикат используют как футеровочный и электроизоляционный материалы, а также для изготовления труб с толщиной стенки 0,3 ... 10 мм. В строительстве поливинилхлорид идет для производства полихлорвинилового линолеума, полихлорвиниловой пленки и др.

Способы сварки пластмасс

Сварка пластмасс заключается в нагреве свариваемых кромок до пластического вязко-текучего состояния и соединения их под некоторым давлением.

Применяются следующие способы сварки пластмасс:Сварка нагретым газом

Свариваемые кромки детали и присадочный материал нагревают до температуры сварки струей горячего воздуха или газа. Для нагрева воздуха (газа) используют специальные электронагреватели или газовые горелки. На рисунке представлена схема сварки этим способом стыкового соединения с присадочным прутком. Свариваемые кромки детали и присадочный пруток с помощью горелки нагревают до получения тонкого вязко-текучего поверхностного слоя. Присадочный пруток вдавливается в разделку шва, нагретые слои материала слипаются и присадочный пруток образует сварной шов. При сварке толстого материала в разделку шва последовательно укладывают несколько нагретых присадочных прутков, как показано на рисунке. Подготовка кромок к сварке заключается в скашивании их под углом 60° при сварке стыковых и нахлесточных соединений. Для получения полного провара необходимо у вершины шва оставить зазор 0,4... 0,5 мм. Сварку без скоса кромок применяют для соединения листов толщиной менее 4 мм. При большой толщине применяют V-образные и Х-образные разделки кромок шва. При этом Х-образные формы более прочны. В процессе сварки по мере размягчения поверхностей свариваемых кромок и присадочного прутка необходимо непрерывно вжимать пруток в основание разделки под небольшим, но постоянным давлением.

При сварке мягких термопластов (полиэтилен и др.) присадочный пруток вводят под тупым углом, чтобы обеспечить достаточное давление на свариваемые кромки. При сварке жестких термопластов (винипласт, органическое стекло и др.) пруток вводят в разделку шва почти под углом 90° к шву. Полиэтилен и полистирол при сварке нагревают горячим газом или воздухом до температуры не выше 160 ... 180°С. Органическое стекло рекомендуют сваривать струей воздуха, нагретого до 200 ...220° С. Присадочным материалом служат прутки площадью сечения от 7 до 12 мм2. Допускается использование сварочных прутков из винипласта (диаметром от 3,0 до 5,0 мм). Винипласт сваривают в размягченном (вязко-текучем) состоянии при температуре 220... 240° С. Присадочным материалом служат сварочные прутки диаметром до 5 мм из пластифицированного винипласта. Процесс сварки осуществляется путем размягчения прутков и сцепления их с основным материалом.

Для сварки пластмасс толщиной от 2 до 25 мм этим способом применяют горелки ГГП-1-66. Теплоносителем является воздух в смеси с продуктами сгорания пропан бутановой смеси. Масса горелки 0,6 кг. Горелка ГЭП-1А-67 работает на основе электроподогрева теплоносителя - газа (воздух, азот и др.). Для этого на пути движения газа в корпусе горелки установлена электроспираль. Масса горелки 0,68 кг. Этим способом можно сваривать детали любых размеров и различной конфигурации. Простота оборудования и технологии сварки позволяют применять этот способ при самых различных строительно-монтажных работах. При сварке следует учесть, что пластмассы имеют высокий коэффициент температурного расширения (в 4 ... 6 раз больше металлов). Это вызывает опасность возникновения относительно больших внутренних напряжений в сварном шве, ослабляющих сварное соединение и вызывающих коробление свариваемых деталей. Для получения хорошего сварного шва рекомендуется применять небольшие площади сечения струи нагретого газа (диаметр струи 3 ... 5 мм), а также различные фиксирующие приспособления.

Сварка контактным нагревом

При этом способе нагрев свариваемых поверхностей производят при помощи электронагревательных элементов. Нагретый элемент устанавливают между свариваемыми поверхностями и доводят их до вязко-текучего состояния. Затем нагревательный элемент удаляют, а свариваемые поверхности соединяют сдавливанием. При сварке пленочных пластмасс нагревательным элементом может служить устройство в виде электроутюга, нагревательного ролика или валика. Пленки соединяют внахлестку и разогревают до определенной температуры. Этим способом сваривают пленки толщиной не более 2 мм, так как низкая теплопроводность затрудняет нагрев пластмасс до нужной температуры. Этот способ сварки годен как для мягких, так и для жестких полимеров. Однако он требует большего времени на нагрев элемента, регулировку температуры и охлаждения шва (под давлением) после сварки.

Сварка токами высокой частоты

Нагрев свариваемых деталей производят в высокочастотном электрическом поле. После разогрева кромок до пластического состояния их сдавливают для получения прочного соединения. Этот способ очень экономичен и широко распространен в промышленности. Наибольшее применение получила сварка высокочастотным током изделий из поливинилхлоридных пластиков. Например, для сварки винипласта применяют токи частотой 60 ... 75 МГц. Толщина свариваемого материала от 0,5 до 2 мм. При меньшей толщине большая часть теплоты расходуется непроизводительно на нагрев прижимающих электродов. Производительность сварки в 5 ... 10 раз выше рассмотренных ранее способов. Для шовной сварки пластмассовых пленок и лент применяют специальные сварочные машины ЛГС-02, МСТ-ЗМ и др. Свариваемый материал прокатывают между двумя вращающимися роликами-электродами, к которым подключен высокочастотный ток. Сварка обеспечивает получение непрерывного, прочного и герметичного шва. Нахлесточные соединения можно сваривать без скоса и со скосом кромок под углом 45°. Ширину шва выбирают в пределах 2 ... 4 мм, скорость сварки достигает 3 м/мин.

Сварка трением

Осуществляется путем нагрева свариваемых кромок деталей до пластического состояния теплотой, выделяющейся при трении поверхностей этих кромок друг о друга. Для сварки одну часть детали закрепляют в патроне токарного или сверлильного станка и после вращения прижимают ко второй части детали, закрепленной неподвижно в специальном приспособлении. Поскольку термопласты имеют плохую теплопроводность трущиеся поверхности быстро нагреваются. Давление сжатия в зависимости от материала составляет 0,2 ... 1 МПа (2 ... 10 кгс/см2). Такой способ сварки не требует подготовки поверхности, так как пленка и грязь вытесняются при сварке.

Преимуществом этого способа является быстрота сварки. В зоне трения температура быстро повышается, обеспечивая моментальную сварку, в то время как температура материала около зоны соединения почти не изменяется. Однако этим способом можно сваривать только тела вращения. Кроме того, необходимость обеспечения давления для сварки делает этот способ применимым для жестких термопластов. На рисунке представлена принципиальная схема установки и способы получения сварных соединений из сплошного и полого материалов.

Сварка ультразвуком

Производится посредством нагрева свариваемых кромок под действием ультразвуковых колебаний. Ультразвуковая сварка является более универсальным способом даже по сравнению с высокочастотной электросваркой. Ее применяют для соединения большого количества разнообразных пластических материалов. Однако If в настоящее время этот способ находится в стадии исследования. Уже разработана ультразвуковая сварка ряда пластиков толщиной более 0,1 мм. Следует ожидать, что в ближайшие годы сварка ультразвуком станет одним из основных способов сварки термопластиков.

electrowelder.ru

Сварка пластмасс трением

Сварку пластмасс трением осуществляют по тому же принципу, что и сварку металлов (см. табл. 25). При этом механическая энергия преобразуется в тепловую непосредственно на свариваемых поверхностях. Режим процесса подбирают так, чтобы в течение нескольких секунд концы деталей нагрелись до необходимой температуры. Когда температура достигнута, относительное движение трущихся поверхностей прекращается, и приложенное давление обеспечивает сварку. Процесс сварки заканчивается естественным охлаждением сжатого изделия.

В последнее время разрабатывают схемы сварки, позволяющие соединять без вращения стержни или трубы большой длины. При этом вращению или вибрации подвергают лишь короткую вставку между свариваемыми деталями.

Качество сварных соединений и в особенности производительность процесса сварки в значительной мере зависят от скорости относительного движения поверхностей трения, величины осевого усилия и величины пластической деформации (осадки).

В результате концентрированного разогрева сварка трением не оказывает отрицательного влияния на свойства околошовной зоны, поэтому сварные соединения имеют хорошие механические свойства. Сварка трением обеспечивает высокий к. п. д. процесса. Это объясняется тем, что при сварке трением тепловыделение происходит строго локализованно и непосредственно на поверхностях свариваемых деталей, в то время как во всех других сварочных процессах большое количество теплоты теряется при подведении его к свариваемой детали, и в результате нагрева большего объема материала, чем это необходимо для сварки. Важное преимущество сварки трением — высокая производительность, возможность легко автоматизировать процесс и вести сварку в полевых условиях вдали от источников энергоснабжения. В этих случаях вращение свариваемой детали может быть осуществлено от двигателя внутреннего сгорания.

Метод сварки трением очень простой. Практически сварка трением может быть выполнена почти на любом токарном станке (например, ДИП-200, винторезном 1А-62 и др.), а также на некоторых сверлильных станках.

Однако сварка трением наряду с преимуществами имеет и недостатки, например, ограниченная форма свариваемого изделия. Чтобы соединение отличалось высоким качеством, хотя бы одна из деталей должна быть телом вращения; в свариваемом сечении она должна иметь форму круга или кольца. При сжатии свариваемых поверхностей в месте соединения наблюдается утолщение, что в ряде случаев нежелательно. Кроме того, чтобы получить необходимые размеры, заготовка должна иметь длину большую, чем это требуется в сварном изделии.

Для сварки труб из винипласта разных диаметров с толщиной стенок 3—7 мм разработаны приспособления и технологический процесс. Перед сваркой концы труб должны быть откалиброваны. Калибровка состоит в том, что концы труб нагревают в масле до температуры 100° С (373 К) в течение 3—4 мин, после чего помещают в специальный калибр и выдерживают 3 мин, затем трубу охлаждают водой комнатной температуры. Откалиброванные трубы зажимают в суппорте, патроне станка, люнете.

После точной центровки и выравнивания одну трубу приводят во вращение, другую слегка поджимают к первой с помощью суппорта. Частота вращения зависит от диаметра трубы: при 50 мм 800 об/мин; при 80 мм 600 об/мин; время вращения 1 ±0,5 мин.

После нагрева концов (2—3 мм) труб до вязкотекучего состояния (140—160° С) станок останавливают и суппортом сжимают концы труб. При этом давление составляет 2—4 кгс/см2 (200—400 кН/м2). Давление не снимают до полного естественного охлаждения шва (7—10 мин). Сварные швы по качеству не уступают основному материалу. Производственный опыт показал, что сварка трением узлов конструкций из пластмасс — производительный и экономичный метод (потребляется незначительное количество электроэнергии).

Сварка т. в. ч. Сварка пластмасс т. в. ч. (см. табл. 25) достаточно широко распространена как в СССР, так и за рубежом. Сущность процесса состоит в том, что изделие из пластмассы помещают в переменное электрическое поле высокой частоты, которое создается между двумя металлическими электродами. Так как многие пластмассы являются несовершенными диэлектриками, элементарные заряды при внесении их в высокочастотное электрическое поле смещаются и небольшое количество имеющихся в диэлектрике свободных зарядов образует ток проводимости. На смещение заряженных частиц затрачивается работа, которая преобразуется в теплоту. При изменении направления электрического поля выделяется некоторое количество теплоты. Поэтому, чтобы интенсифицировать процесс сварки, применяют т. в. ч. (30—40 МГц и более).

Сварка пластмасс происходит непосредственно под электродами. Под действием т. в. ч. пластмассы нагреваются до температуры вязкотекучего состояния. Давление, приложенное к электродам, создает тесный контакт между свариваемыми поверхностями. Сварку т. в. ч. в большинстве случаев ведут без присадочного материала.

Мощность, обеспечивающая процесс сварки и выделяющаяся в материале в виде теплоты, слагается из мощности, расходуемой на нагрев материала (полезная мощность), и мощности, теряемой при отдаче теплоты холодным электродам. Потеря мощности зависит от толщины нагреваемого материала и времени нагрева (рис. 127).

Рис.127. Зависимость мощности р, подводимой к рабочему концентратору, отнесенной к 1 см2 поверхности шва, от суммарной толщины материала b при разном времени нагрева

Высокочастотная сварка принципиально отличается от других методов тем, что тепловая энергия выделяется в массе нагреваемого материала, расположенного между электродами, по всей толщине равномерно, вследствие чего процесс значительно ускоряется и наружная поверхность материала не перегревается.

В промышленность уже внедрена точечная, прессовая и роликовая сварка т. в. ч. Этот метод обеспечивает герметичность и высокую прочность сварных швов. Метод легко автоматизируется. В СССР и за рубежом созданы установки для точечной -и шовной сварки пленочных пластмасс и прессовой сварки пленок, листов и труб. В установке для шовной сварки пленочных пластмасс уложенные внахлестку пленки протягиваются между роликами, служащими высокочастотными электродами. Скорость сварки составляет 27—65 м/ч. Прессовую сварку применяют при соединении листовых материалов одновременно по всему периметру или значительной его части (табл. 27).

В процессе сварки используют сменные электроды (штампы), с помощью которых образуются сварные швы заданной конфигурации и размеров. Конфигурация электродов может быть различной в зависимости от вида сварного соединения.

Сварку т.в.ч. применяют при изготовлении некоторых тонкостенных деталей, изделий широкого потребления и т. д. Сварка т.в.ч. отличается высокой производительностью, экономичностью и удовлетворительным качеством соединений (табл. 28). Этим методом сваривают материалы толщиной до 5 мм. Однако такие наиболее совершенные диэлектрики, как фторопласт-4 (тефлон), полиэтилен, полистирол и некоторые другие, непосредственно т. в. ч. не свариваются.

В таких пластмассах токи смещения и проводимости малы и они не могут генерировать достаточного количества теплоты для сварки.

Таблица 27 Промышленное оборудование для сварки пластмасс т. в. ч.

Показатели

Шовные машины

Сварочный пресс ЛГСП-04

ЛГС-02

мст-зм

Максимальная мощность, потребляемая от сети, Вт

1100

1000

2000

Максимальный ток, потребляемый от сети, А

5

5

9

Колебательная мощность, Вт: максимальная

300

-

450

Колебательная мощность, Вт:номинальная

200

400

Максимальный ток, мА: анодный

300

-

450

Максимальный ток, мА: сеточный

80

-

Скорость подачи материала, м/мин

0,5—3

3

1,5—4

Ширина шва, мм

1,5—6

2—6

1,5—4

Максимальная длина электродов (при ширине шва 2 мм), мм

-

-

450

Максимальная площадь электродов, см2

10

Усилие сжатия, кгс

5—60

Габаритные размеры машины, мм

1100 X 700X1200

1100 X 700X1200

950 X 600X1200

Примечание. Напряжение питающей сети 220 В. число фаз сети I, частота 39+1 МГц.

Для сварки полиэтилена в соединение необходимо ввести полоску полихлорвинила, который, являясь худшим диэлектриком, нагревается т. в. ч. и передает теплоту полиэтилену. С помощью т. в. ч. трудно осуществить сварку угловых, стыковых и тавровых соединений, так как в этом случае трудно обеспечить равномерный нагрев.

www.prosvarky.ru


Смотрите также