Все о сварке

Технология сварки легированных сталей


Сварка легированных сталей

Сварка магистральных трубопроводов является высокотехнологичным процессом, поэтому должна выполняться сварщиками высокой квалификации, с соблюдением всех технических требований, потому что от этого зависит качественность проводимого трубопровода. В  нашей статье мы расскажем об особенностях процесса сварки магистральных трубопроводов, знание которых обеспечит качественное соединение секции труб. 

Сварка высоколегированных сталей – довольно сложный и требующий строго соблюдения технологии процесс. Неправильно подобранные расходные материалы, не соблюдение требований по силе тока и прочего, может привести к сложно устраняемым последствиям. О том, как осуществить сваривание из подобных деталей и пойдет речь в этой статье.

В нашей статье мы проанализировали существующие способы сварки, а также подробно остановились на всех этапах, предшествующие  процессу, под названием, сварка из листовой стали, четкое следование которым обеспечит успешный результат создания металлоконструкций из листовой стали.

stalevarim.ru

Сварка легированных сталей - Cварочные работы

К низколегированной относится сталь, легированная одним или несколькими элементами, если содержание каждого из них не превышает 2%, а суммарное содержание легирующих добавок не более 5%. Низколегированные стали делятся на низкоуглеродистые конструкционные, теплоустойчивые и среднеуглеродистые стали.

Низколегированная низкоуглеродистая конструкционная сталь по реакции на термический цикл сварки мало отличается от обычной низкоуглеродистой стали. Различие в основном состоит в несколько большей склонности к образованию закалочных структур в металле шва и околошовной зоны при повышенных скоростях охлаждения. Дополнительное легирование стали марганцем, кремнием и другими элементами способствует образованию в сварных соединениях закалочных структур. Поэтому режим сварки большинства этих сталей ограничивается более узкими пределами погонной энергии, чем при сварке пизкоуглеродистой стали. Обеспечение равнопрочности металла шва с основным металлом достигается главным образом за счет легирования его элементами, переходящими из основного металла. Иногда для повышения стойкости против хрупкого разрушения металл шва дополнительно легируют через сварочную проволоку. Стойкость металла против кристаллизационных трещин несколько ниже, чем у низкоуглеродистых сталей. Повышения стойкости достигают путем снижения содержания в металле шва углерода, серы и некоторых других элементов за счет применения сварочной проволоки с пониженным содержанием указанных элементов, а также выбора соответствующей технологии и рациональной конструкции. Технология сварки низколегированных низкоуглеродистых конструкционных сталей покрытыми электродами мало отличается от технологии сварки низкоуглеродистых сталей. Сварку ведут в основном электродами с фтористо-кальциевым покрытием типа Э42А и Э50А, которые обеспечивают более высокую стойкость против образования кристаллизационных трещин и повышенные пластические свойства по сравнению с электродами других типов. При газовой сварке низколегированной стали используют нормальное пламя, мощность которого выбирают из расчета 75—100 дм3/ч ацетилена при левом способе и 100—130 дм3/ч при правом способе на 1 мм толщины металла. Для повышения механических свойств металла шва его проковывают при 800—850 °С с последующей нормализацией.

При изготовлении изделий из низколегированных теплоустойчивых сталей наибольшее распространение находит ручная сварка покрытыми электродами и полуавтоматическая сварка в защитных газах. Работа конструкций при высоких температурах способствует протеканию диффузионных процессов. Поэтому для снижения интенсивности протекания этих процессов в сварном соединении стремятся максимально приблизить составы металла шва и основного. Для сварки хромомолиб-деновых сталей применяют электроды типа ЭМХ. Стали с малым содержанием углерода рекомендуется сваривать с предварительным подогревом до 200 °С, при большем содержании подогрев производят при 250 —300 °С. Хромомолибденованадиевые стали сваривают электродами типа ЭХМФ с предварительным и сопутствующим подогревом до 300—350 °С и последующим высоким отпуском при 700—740 °С в течение 2 —3 ч. При сварке листовой молибденовой стали малых толщин предварительный подогрев не выполняют, а при толщинах более 6 мм требуется предварительный подогрев, температуру которого увеличивают с увеличением толщины металла. Многослойную сварку ведут способом «каскад». При сварке трубопроводов с толщиной стенки более 6 мм и содержанием углерода в металле более 0,18 % следует применять предварительный подогрев, обеспечивающий во время сварки температуру металла шва в околошовной зоне не ниже 200 °С. Стык должен завариваться без перегрева. В случае возникновения перегрева необходимо обеспечить медленное остывание и нагрев перед возобновлением сварки до 200 °С. Газовую сварку низколегированных теплоустойчивых сталей выполняют нормальным ацетилено-кислородным пламенем (расход ацетилена 100 дм3/ч на 1 мм толщины металла левым и правым способами). Металл сварочной ванны необходимо поддерживать в густом состоянии, чтобы предотвратить выгорание хрома и молибдена. Рекомендуется предварительный подогрев до 250—300 °С. Применяется одно- и многослойная сварка с наименьшим числом перерывов. После окончания сварки пламя горелки медленно отводят вверх, что способствует более полному выделению газов из расплавленного металла. Хромомо-либденовые и молибденовые стали подвергают термической обработке.

К среднелегированным относятся стали, легированные одним или несколькими элементами при суммарном их содержании 2,5—10 %. Главной и общей характеристикой этих сталей являются механические свойства. Так, временное сопротивление их составляет 588—1960 МПа, что значительно превышает аналогичный показатель обычных углеродистых конструкционных сталей. При высоких прочностных свойствах среднелегирован-ные стали после соответствующей термообработки по пластичности и вязкости не только не уступают, но в ряде случаев и превосходят малоуглеродистую сталь. При этом среднелегированные стали обладают высокой стойкостью против перехода в хрупкое состояние. Поэтому их применяют для работы в условиях ударных и знакопеременных нагрузок, низких и высоких температур, в агрессивных средах. Получение сварных соединений необходимого качества, учитывая особые физико-химические свойства среднелегированных сталей, встречает ряд специфических трудностей. Прежде всего, главным образом при сварке сталей с повышенным содержанием углерода и легирующих элементов, является предупреждение появления холодных трещин в металле сварного соединения. Второй трудностью является предупреждение возникновения кристаллизационных трещин в металле шва. Борются с этим теми же методами, что и при сварке углеродистых сталей. Возникает также трудность в получении металла сварного соединения с равноценными или близкими механическими свойствами к основному металлу. В ряде случаев возникают серьезные затруднения в обеспечении необходимых прочностных и пластических свойств металла околошовной зоны и зоны сплавления. Для предупреждения образования холодных трещин в сварных соединениях из среднелегированных сталей следует применять стали, обладающие требуемыми механическими свойствами при возможно низком содержании углерода и легирующих элементов; регулировать сварочный термический цикл путем изменения режима сварки. Если стойкость сварного соединения против появления холодных трещин очень низкая и избежать их образования путем подбора режима сварки не удается, в отдельных случаях прибегают к регулированию термического цикла путем предварительного и сопутствующего подогрева свариваемых кромок. Стойкость сварных соединений из среднелегированных сталей против возникновения холодных трещин можно также изменять, регулируя нарастание временных сварочных напряжений при охлаждении применением сварочных проволок с возможно более низкой температурой плавления, уменьшением содержания водорода в основном металле и металле шва, термообработкой сварных соединений сразу же после окончания сварки, предварительной наплавкой кромок, а также проковкой сварных соединений и обработкой ультразвуком сразу после окончания сварки, понижением температуры сварных соединений ниже 0 °С сразу после их остывания до комнатной температуры, предупреждением увлажнения сварных соединений после окончания сварки.

Большинство конструкций из среднелегированных сталей сваривают вручную низководородистыми электродами с фтористо-кальциевым покрытием на постоянном токе обратной полярности. Швы большого сечения выполняют каскадным и блочным способами. При этом обеспечивается разогрев области шва, особенно при сварке сталей большой толщины, свыше 150 °С. Для создания такого разогрева используют каскадный способ сварки при небольшой (менее 200 мм) длине его ступени. Режимы сварки выбирают в зависимости от типа стержня — при ферритном стержне они не отличаются от режимов сварки низкоуглеродистых сталей, при аустенитном — от режимов сварки аустенитных сталей.

Высоколегированные стали и сплавы составляют значительную группу конструкционных материалов. К числу основных трудностей, которые возникают при сварке указанных материалов, относится обеспечение стойкости металла шва и околошовной зоны против образования трещин, коррозионной стойкости сварных соединений, получение и сохранение в процессе эксплуатации требуемых свойств сварного соединения, получение плотных швов. При сварке высоколегированных сталей могут возникать горячие и холодные трещины в шве и околошовной зоне. С кристаллизационными трещинами борются путем создания в металле шва двухфазной структуры, ограничения в нем содержания вредных примесей и легирования вольфрамом, молибденом и марганцем, применения фтористо-кальциевых электродных покрытий и фторидных сварочных флюсов, использования различных технологических приемов. Присутствие бора может привести к образованию холодных трещин в швах и околошовной зоне. Предотвращение их появления достигается предварительным и сопутствующим подогревом сварного соединения свыше 250 — 300 °С. С помощью технологических приемов можно также предотвратить кристаллизационные трещины. В ряде случаев это достигается увеличением коэффициента формы шва, увеличением зазора до 1,5 — 2 мм при сварке тавровых соединений. Предварительный и сопутствующий подогрев не оказывает заметного влияния на стойкость против образования кристаллизационных трещин. Большое влияние оказывает режим сварки. Применение электродной проволоки диаметром 1,2 — 2 мм на умеренных режимах при минимально возможных значениях погонной энергии создает условия для предотвращения появления трещин. Предпочтение следует отдавать сварочным материалам повышенной чистоты. При сварке аустенитных сталей проплавление основного металла должно быть минимальным. Горячие трещины образуются при сварке стали с повышенным содержанием серы, фосфора, кремния, марганца в сочетании с медью, ниобием и легкоплавкими примесями. С околошовными горячими трещинами борются созданием в околошовной зоне двухфазной структуры, уменьшением содержания в стали серы и фосфора, применением чистых сварочных материалов и мелкозернистых сталей и сплавов.

Обладая высокой коррозионной стойкостью, аусте-нитная и хромистые стали подвержены опасному виду коррозионного разрушения — межкристаллитной коррозии. Для предотвращения межкристаллитной коррозии при сварке высоколегированных сталей рекомендуется снижать содержание углерода в основном металле и металле шва до 0,02—0,03 %; легировать основной металл и металл шва титаном, ниобием, танталом, ванадием, цирконием; применять стабилизирующий отжиг в течение 2—3 ч при 850 — 900 °С с охлаждением на воздухе; дополнительно легировать металл шва хромом, кремнием, молибденом, ванадием, вольфрамом, алюминием; закалять стали (стали типа 18-8 при 1050—1100 °С). При сварке жаростойких сталей нужно стремиться приблизить состав металла шва к составу основного металла. Азот хорошо растворяется в высоколегированных сталях, поэтому пор в сварных швах не вызывает. При сварке в аргоне некоторых аустенитных сталей наблюдается образование пор по границе сплавления. Добавка к аргону 2—5 % кислорода предупреждает появление пор. В остальном требованиям предотвращению пор такие же, как и при сварке обычных углеродистых сталей.

Технология сварки высоколегированных сталей за некоторыми исключениями не отличается от технологии сварки углеродистых конструктивных сталей. Из-за пониженной теплопроводности и высокого коэффициента линейного расширения во избежание коробления необходимо выбирать режимы сварки, обеспечивающие минимальную концентрацию нагрева. Сварку аустенитных сталей выполняют укороченными электродами для снижения коэффициента наплавки. Для получения заданной глубины провара силу тока снижают на 10—15 % по сравнению со сваркой углеродистой стали. Для уменьшения угара легирующих элементов сварку ведут короткой дугой без колебаний конца электрода. При сварке коррозионностойких сталей не допускается возбуждение дуги на основном металле, попадание брызг металла на основной металл. Складки на поверхности шва, углубления между чешуйками, щели или непрова-ры в корне шва при воздействии агрессивной среды могут явиться очагами коррозии. Лучшей коррозионной стойкостью обладают гладкие швы с плавным переходом к основному металлу. Поэтому очистка швов пневматическим зубилом или другими способами, при которых образуются вмятины и забоины, не рекомендуется.

При изготовлении конструкций из высоколегированных сталей применяют все виды сварки плавлением. Ручную сварку покрытыми электродами выполняют за некоторым исключением, как сварку обычных конструкционных сталей. Сварку производят на постоянном токе обратной полярности в основном электродами с фтористо-кальциевым покрытием короткой дугой без поперечных колебаний конца электрода. Сварку выполняют электродами меньшей длины по сравнению с обычными и на небольших токах. Перед сваркой электроды прокаливают при 250—400 °С в течение 1 —1,5 ч. Силу тока для аустенитных электродов берут из расчета 25—30 А на 1 мм диаметра электрода. При сварке в вертикальном или потолочном положении силу тока уменьшают на 10—30 % по сравнению со сваркой в нижнем положении. Сварка в аргоне или гелии характеризуется стабильностью дуги, высоким качеством сварных швов, которое обеспечивается хорошей защитой зоны сварки от воздуха. Сварку вольфрамовым электродом ведут на постоянном токе прямой полярности. При сварке сталей с высоким содержанием алюминия рекомендуется переменный ток, способствующий разрушению оксидной пленки. Конец присадочной проволоки должен все время находиться в струе защитного газа. Как правило, аустенитные стали сваривают плазменной сваркой.

При газовой сварке хромистых сталей применяют нормальное пламя. Сварку ведут пламенем пониженной мощности из расчета 70 дм3/ч ацетилена на 1 мм толщины свариваемого металла. Для предохранения выгорания хрома и для удаления из сварочной вапны его окислов применяют специальные флюсы. Стали толщиной до 3 мм сваривают левым способом, толщиной более 3 мм — правым способом. С целью уменьшения коробления выполняют предварительный подогрев до [50 — 250 °С. Сварку ведут в один слой с максимально допустимой скоростью, без перерывов и повторного нагрева одного и того же места. Хромоникелевые аусте-нитные стали толщиной до 3 мм сваривают газовой сваркой. Сварку осуществляют строго нормальным пламенем с максимальной скоростью. Сварку ведут левым и правым способами, длинные швы — обратноступенчатым способом. Для удаления окислов применяют флюс НЖ-8, а для улучшения механических свойств, предупреждения межкристаллитной коррозии и деформаций — термическую обработку с нагревом до 1050— 1100 °С с последующим охлаждением в воде.

Одним из путей экономии дорогостоящих высоколегированных сталей является применение комбинированных конструкций, изготовленных из нескольких сталей. Сварка высоколегированных сталей со средне- или низколегированными и обычными углеродистыми сталями явилась настолько трудной задачей, что составила целую проблему, известную как проблема сварки разнородных сталей. При сварке разнородных сталей в шве часто появляются трещины, в зоне сплавления может происходить изменение структуры с образованием прослоек, существенно отличающихся от структуры свариваемых металлов. Сварка разнородных сталей затруднена еще тем, что в подавляющем большинстве случаев они отличаются друг от друга коэффициентом линейного расширения. Основным путем решения вопроса сварки разнородных сталей является использование сварочных материалов, способствующих получению аусте-нитного металла шва с высоким содержанием никеля, который обеспечивает стабильную зону сплавления. Содержание никеля в металле шва зависит от температуры его эксплуатации. Для экономии никеля сварные соединения разнородных сталей делят на четыре группы: I — работающие при температурах до 350°С, II — 350 —450 °С, III —450 — 550 °С и IV — выше 550 °С. Ручную сварку разнородных сталей первой группы можно производить существующими электродами. Не следует пользоваться электродами типа ЭА-1. Для соединений II—IV групп рекомендуются электроды АНЖР-1, АНЖР-2 и АНЖР-3. В остальном технология сварки разнородных сталей такая же, как и сварки других сталей.

В зависимости от химического состава конструкционных легированных сталей процесс сварки происходит по-разному. Сварка этих сталей имеет ряд особенностей, так как происходит частичное выгорание легирующих компонентов, поэтому металл шва по своим свойствам отличается от основного металла. Легированные стали по сравнению с низкоуглеродистыми хуже проводят тепло, склонны к перегреву свариваемого металла и появлению больших деформаций.

Для предупреждения перегрева металла и появления больших деформаций легированные стали сваривают горелками меньшей мощности. Для уменьшения выгорания легирующих компонентов пламя горелки должно быть нормальным или с небольшим избытком ацетилена. Отдельные конструкционные легированные стали способны к закалке на воздухе. Для предотвращения этого необходимо перед сваркой подогреть подготовленное изделие. Некоторые легированные стали после сварки подвергают термической обработке.

Низколегированные хромокремненикелемедистые стали для строительных конструкций марок 15ХСНД и ЮХСНД хорошо свариваются газовой сваркой в связи с небольшим содержанием углерода и легирующих примесей. Мощность наконечника выбирают из расчета 90—120 л/ч ацетилена при левой и 120—150 л/ч ацетилена при правой сварке на 1 мм толщины свариваемого металла. Пламя должно быть нормальным. При сварке применяют сварочную проволоку Св08, СвОЗА или Св10Г2. Для получения более плотного сварного шва Делают проковку шва при светло-красном калении (800—850 °С). Для снятия напряжений, полученных в результате проковки сварного шва, его подвергают нормализации с нагревом в печи или горелками с последующим медленным охлаждением на воздухе.

Низколегированные молибденовые и хромомолибде-новые теплоустойчивые стали применяют для изготовления труб в котлах высокого давления. Пламя горелки должно быть нормальным, мощностью 100—130 л/ч ацетилена на 1 мм толщины свариваемого металла.

Для сварки применяют проволоку марок Св08ХНМ, СвЮНМ, Св18ХМА, СвЮХМ, СвЮМХ. Сварку производят небольшими участками длиной 15—20 мм. При сварке металла толщиной 16 мм изделие подогревают до температуры 250—360 °С, поддерживая ее до окончания сварки. Заданную температуру в процессе сварки поддерживают вспомогательными, многоплеменными горелками или специальными электроподогревателями. Стали 15М и 20М толщиной 10 мм при температуре минус 103 С можно сваривать без предварительного подогрева, стали большей толщины подогревают до 250— 300 °С. Хромомолибденовые стали 12ХМ, 15ХМ, 12Х1МФ при температуре минус 10 °С сваривают с подогревом до 250—300 °С независимо от толщины металла.

Перед сваркой кромки зачищают до металлического блеска. Детали с толщиной стенки 5 мм сваривают за один проход, детали или узлы с толщиной стенки более 5 мм сваривают в несколько проходов.

Для получения качественного сварного соединения этих сталей первый шов образуется за счет взаимного оплавления кромок, т.е. без присадочного металла участками не более 15—25 мм во избежание появления микротрещин. Чтобы предотвратить выгорание хрома и молибдена, металл сварочной ванны поддерживают в более густом состоянии, не перегревая его.

Перед возобновлением сварки после перерыва подогревают место сварки, а при сварке кольцевых швов — весь шов, до температуры 250—300 °С. При завершении сварки следят за тем, чтобы переход от усиления шва к основному металлу был плавным по всей длине шва.

Детали и узел котлов с толщиной стенки свыше 10 мм подвергают термообработке при температуре 900—930 °С для молибденовой и 930—950 °С для хромо-молибденовой стали с выдержкой при этой температуре I —1,5 мин на 1 мм толщины свариваемого металла с последующим охлаждением на спокойном воздухе. После монтажа и сварки паропроводных труб их необходимо подвергнуть термической обработке газовыми го* релками или специальными электронагревателями.

Местную термообработку труб на монтаже из молибденовых и хромомолибденовых труб производят при температуре 680—700° С; хромомолибденованадиевые стали подвергают термообработке при температуре 720—740° С с выдержкой 4—5 мин на 1 мм толщины свариваемого металла. Сварной стык подвергают термической обработке на ширину 100 мм в обе стороны от шва. Хорошее качество сварного соединения из хро-момолибденовой стали получается при сварке присадочной проволокой СвГ8ХМА.

К низколегированным хромокремнемарганцовистым сталям (хромансиль) относятся следующие наиболее часто используемые марки: 20ХГС, 25ХГС, ЗОХГС, 30ХГСА, 35ХГС, с содержанием 0,17—0,4% углерода, 0,9—1,2% кремния, 0,8—1,1% марганца, 0,8—1,1% хрома. Эти стали сваривают нормальным пламенем. Мощность наконечника выбирают из расчета 75—100 л ацетилена в час на 1 мм толщины свариваемого металла. При сварке окислительным пламенем более интенсивно выгорают такие легирующие компоненты, как хром, кремний, марганец, с образованием в сварном шве окислов, шлаков и частично непровара.

В качестве присадочного материала используют сварочную низкоуглеродистую проволоку Св08 и Св08А, а в том случае, когда к сварному соединению предъявляют повышенные требования, применяют сварочную проволоку Св18ХГСА или Св18ХМА. Кромки свариваемых деталей должны быть хорошо подогнаны под сварку и очищены до металлического блеска от всевозможных загрязнений; зазор по всей длине (периметру) шва должен быть одинаковым.

Прихватку листов под сварку производят через 20— 30 мм при толщине металла до 1,5 мм, а при большей толщине — через 40—60 мм. Прихватки от края листа располагают на расстоянии 10—15 мм. Сварку производят в один слой от середины шва к его краям. С целью уменьшения выгорания легирующих компонентов сварку производят быстро без задержки пламени на одном месте и без перерывов. Хромокремнемарганцови-стые стали при резком охлаждении легко закаливаются с образованием трещин в шве и околошовной зоне.

Поэтому горелку отводят медленно вверх, одновременно прогревая факелом пламени металл конечного участка радиусом 20—40 мм.

В зависимости от назначения сварной детали или узла его подвергают термической обработке (закалке с последующим отпуском). Закалку производят при температуре 500—650 °С с выдержкой при этой температуре 5 мин, затем изделие нагревают до 880 °С с той же выдержкой с последующим охлаждением в массе. Отпуск производят путем нагрева до температуры 400— 600 °С с охлаждением в горячей воде.

Хромистые стали. При монтаже специального оборудования применяют кислотостойкие и стойкие (при высоких температурах) хромистые стали с содержанием хрома до 30% и углерода — от 0,13 до 0,9%. Хромистые стали склонны к закалке на воздухе, в результате чего после сварки могут образовываться трещины. Чем больше в стали углерода, тем хуже она сваривается и тем чаще образуются трещины. Чтобы уменьшить опасность трещинообразования, сталь перед сваркой подогревают до температуры 150—200 °С. Обязателен подогрев хромистых сталей с содержанием хрома более 14%. Данные стали склонны к большому короблению в результате малой теплопроводности и большого коэффициента линейного расширения.

Сварку хромистых сталей ведут нормальным пламенем, наконечником мощностью 70 л ацетилена в час на 1 мм толщины свариваемого металла. Избыток кислорода приводит к окислению хрома, а избыток ацетилена— к образованию так называемых карбидов хрома.

При таком положении металл шва и околошовной зоны перестает быть стойким против кислот. При сварке применяют присадочную проволоку из хромоникеле-вой стали Св02Х19Н9 или Св06Х19Н9Т (с титаном), позволяющую получать лучшее качество сварного соединения. Титан и ниобий препятствуют образованию в сварном шве и околошовной зоне карбидов хрома (твердых химических соединений хрома с углеродом). Сварку производят быстро, избегая перерывов и повторных нагревов. Сварка должна быть с одной стороны и в один слой. Предупредить выгорание хрома можно путем нанесения флюса на проволоку и свариваемые кромки, при этом флюс должен покрывать как лицевую, так и обратную сторону шва.

После сварки детали подвергают термической обработке по режиму, соответствующему данной марке стали.

Кислотостойкие стали с высоким содержанием хрома при длительном нагреве склонны к росту зерна в зоне нагрева со снижением прочности сварного соединения. Поэтому эти стали газовой сваркой не сваривают.

Хромоникелевые аустенитные стали — стали, сохраняющие структуру аустенита при медленном понижении температуры от 1000° С и более до комнатной.

Основу аустенитной стали составляет железо (более 45%). Содержание легирующих элементов, важнейшими из которых являются хром и никель, не превышает 55%. Если сумма легирующих компонентов превышает 55%, вместо термина аустенитная сталь применяют термин аустенитный сплав.

Металлургическая промышленность выпускает десятки марок высоколегированных хромоникелевых сталей и никелехромовых сплавов. Наибольшее распространение при изготовлении сварных конструкций получили нержавеющие стали — стали с высоким содержанием хрома, устойчивые против коррозии в атмосфере и различных средах.

Стали и сплавы с высоким содержанием хрома (более 6—8%) делят на три основные группы: 1) коррозионностойкие (нержавеющие) стали; 2) жаростойкие стали и сплавы;

3) жаропрочные стали и сплавы.

К группе коррозионностойких относятся стали, обладающие стойкостью против электрохимической коррозии — атмосферной, почвенной, щелочной, кислотной, солевой, морской и др.

Наиболее распространенными аустенитными корро-зиониостойкими сталями являются 0Х10Н20Т2, Х14Г14НЗТ (ЭИ711), 1Х16Н15МЗБ (ЭИ847) и др. (ГОСТ 5632—61), к аустенитным жаростойким сталям и сплавам относятся: Х20Н14С2 (ЭИ211), 0Х23Н18 и др.

К группе жаростойких относятся стали и сплавы, обладающие стойкостью против химического разрушения поверхности в газовых средах при температуре выше 550 °С и работающие в ненагруженном или слабонагру-жениом состоянии. Эти стали обладают высокой прочностью н вязкостью, хорошо сопротивляются действию высоких температур, щелочей, кислот, хорошо поддаются штамповке и вытяжке.

Применительно к нержавеющим сталям ацетилено-кислородная сварка имеет следующие серьезные недостатки. При избытке ацетилена возможно науглероживание металла шва, а в ряде случаев и околошовной зоны. В результате этого снижается коррозионная стойкость сварного соединения и появляется опасность образования горячих трещин.

Если в пламени газовой горелки содержится избыток кислорода, то появляется возможность окисления таких элементов, как титан, алюминий, хром и др. Окисление ферритообразующих элементов может, кроме того, вызвать аустенизацию сварного шва и появление горячих трещин. Поэтому ни восстановительное, ни окислительное пламя нельзя использовать при газовой сварке нержавеющих сталей. Сварку следует производить строго нейтральным пламенем. Мощность пламени горелки берут из расчета 75 л ацетилена в час на 1 мм толщины свариваемого металла.

Для сварки нержавеющих сталей применяют проволоку СвОХ18Н9, СвОХ!8Н9С2, Св1Х18Н9Т, Св1Х18НЭБ, Св1Х18Н11М и др. При сварке жаропрочной стали применяют проволоку, содержащую 21% никеля и 25% хрома. При сварке металла толщиной до 2 мм делают отбортовку, величина которой равна толщине листа. При толщине листа 3—4 мм сварку ведут без разделки, при большей толщине свариваемого металла делают разделку кромок под углом 70—80°.

Для удаления окислов хрома и улучшения внешнего вида сварного шва применяют флюс, состоящий из 80% плавикового шпата и 20% ферротитана.

Можно использовать флюс, состоящий из смеси 50% буры и 50% борной кислоты или 80% буры и 20% окиси кремния.

Флюс разводят в воде до смеганообразного состояния. Приготовленный флюс наносят на кромки за 15— 20 мин до сварки. Наносят его с лицевой и обратной стороны свариваемых кромок детали. Чтобы уменьшить коробление свариваемого изделия, применяют обратно-ступенчатый способ сварки с началом сварки на расстоянии 75—100 мм от кромки.

Сварку необходимо вести быстро, за один проход и без колебаний присадочной проволокой. Ванну расплавленного металла покрывают тонким слоем шлака, а конец присадочной проволоки погружают в ванну.

Сваривать можно и левым и правым способами. Наклон мундштука горелки и присадочной проволоки такой же, как и при сварке углеродистой стали.

Для получения заданных механических свойств и повышения коррозионной стойкости сварное соединение после сварки подвергают термической обработке (закалке) нагревом до температуры 1050—1100 °С с последующим быстрым охлаждением в воде. Закалку можно заменить отжигом при температуре 850° С с последующим охлаждением на воздухе. Сварное соединение из металла толщиной 1—2 мм можно охлаждать на воздухе. Сталь с добавлением титана подвергать термической обработке после сварки не обязательно.

После сварки шлак и остатки флюса удаляют путем промывки сварного шва и околошовной зоны в горячей воде волосяной щеткой.

Схемы сборки и сварки пластин из нержавеющей стали марки Х18Н9Т толщиной 1,5 мм (без разделки кромок) и толщиной 5 мм с V-образной разделкой кромок представлены на рис. 37 и 38.

Присадочная проволока: Св06Х19Н9Т диаметром 1 и 4 мм с флюсом состоит из смеси прокаленной буры (50%) и борной кислоты (50%) в виде пасты, разведенной водой.

Перед сваркой за 15—20 мин флюс наносят при помощи кисточки на свариваемые кромки и на присадочную проволоку.

Рис. 38. Схема сварки и сборки пластин из нержавеющей стали толщиной 5 мм

Читать далее:

Сварочные флюсыСварочные электродыОбщие сведения о сварке арматурыПротивопожарные мероприятия при сваркеБезопасность труда при сварке технологических трубопроводовБезопасность труда при сварке строительных металлических и железобетонных конструкцийЗащита от поражения электрическим током при сваркеТехника безопасности и производственная санитария при сваркеУправление качеством сваркиСтатистический метод контроля

stroy-server.ru

§ 64. Технология сварки легированных сталей [1981 Фоминых В.П., Яковлев А.П. - Ручная дуговая сварка]

Сварка низколегированных и среднелегированных конструкционных сталей. Свариваемость таких сталей зависит от содержания углерода и легирующих компонентов и ухудшается с ростом содержания углерода и легирующих компонентов. Стали кремнемарганцевой группы 15ГС, 18Г2С и 25Г2С сваривают электродами типа Э60А марки УОНИ-13/65. Перед сваркой кромки тщательно зачищают от грязи, ржавчины и окалины. Сварку выполняют предельно короткой дугой. Изделие перед сваркой подогревают до температуры 200 °С, электроды перед сваркой прокаливают при 400 °С в течение одного часа.

Кремнемарганцемедистые стали 10Г2СД, 10ХГСНД, 15ХСНД и 12ХГ сваривают электродами типа Э50А марки УОНИ-13/55. Изделие перед сваркой не подогревают.

Сварка легированной машиностроительной стали. Хромистая сталь 15ХМ сваривается электродами УОНИ-13/85 предельно короткой дугой без подогрева и последующей термической обработки.

Хромомолибденовая сталь 15ХМ сваривается электродами ЦЛ-14 с предварительным подогревом изделия до 250 - 300°С и последующим высоким отпуском при 710°С. Сталь марки 30ХМ сваривается электродами ЦЛ-30-63 с предварительным подогревом изделия до 350°С и последующим отпуском при 600°С.

Хромо кремнемарганцевые стали 20ХГСА, 25ХГСА, 30ХГСА, ЗОХГСуА свариваются электродами ЦЛ-18-63 или НИАТ-ЗМ предельно короткой дугой. После сварки сварные соединения подвергаются термической обработке на высокую прочность: закалка с температуры 880°С и низкий отпуск. Технологические характеристики электродов для сварки некоторых легированных машиностроительных сталей приводятся в табл. 32.

Сварка теплоустойчивых сталей. К теплоустойчивым сталям относятся 12 MX; 20МХЛ; 34ХМ; 20ХЗМВФ; 20ХМФ; 20ХМФЛ; 12Х1М1Ф; 15ХМФКР; 12Х2МФБ;Х5М; 15Х5МФА; Х5ВФ; 06X13; Х17; 1X13 и др.

Изделия из сталей 12МХ и 20МХЛ, работающие при температуре до 550°С, свариваются электродами ЦЛ-14. Сварку выполняют с предварительным подогревом изделия до 250 -300°С для стали 20МХЛ и до 200°С - для стали 12МХ. После сварки рекомендуется высокий отпуск при температуре 710°С. Сталь 12МХ можно сваривать также электродами ГЛ-14, если изделие работает при температуре до 520°С. Подогрев и отпуск такие же, что и при применении электродов ЦЛ-14.

Изделия из сталей 34ХМ и 20ХЗМВФ, работающие при температуре до 470°С, сваривают электродами ЦЛ-30-63. Сварку выполняют с предварительным и сопутствующим подогревом изделия до 350°С для стали 34ХМ и до 400 - 450°С - для стали 20ХЗМВФ. Сварные соединения подвергаются отпуску: сталь 34ХМ - при температуре 600°С, сталь 20ХЗМВФ - при температуре 680°С.

Изделия из сталей 20ХМФ, 20ХМФЛ, 12Х1М1Ф, работающие при температуре до 570°С, сваривают электродами ЦЛ-20-63. Сварка выполняется короткой дугой с предварительным и сопутствующим подогревом изделия до 300 -350 °С. После сварки рекомендуется высокий отпуск при 700 -740°С в течение 3 ч.

Изделия из сталей 15ХМФКР и 12Х2МФБ, работающие при температуре до 600°С, сваривают электродами ЦЛ-26М-63. Сварку выполняют короткой дугой с предварительным и сопутствующим подогревом до температуры 350-400°С, а после сварки выполняют высокий отпуск при температуре 740 - 760 °С.

32. Технологические характеристики электродов для сварки некоторых легированных сталей

Изделия из сталей Х5М и 15Х5МФА, работающие в агрессивных средах при температуре до 450°С, сваривают электродами ЦЛ-17-63 с предварительным и сопутствующим подогревом до 300 - 450°С и с последующим высоким отпуском после сварки при температуре 760°С в течение 3 ч. Изделия из сталей Х5ВФ, 06X13 и X17 сваривают электродами СЛ-16.

Технологические данные электродов для сварки теплоустойчивых сталей приведены в табл. 33.

Сварка высоколегированных коррозионностойкпх, жаростойких и жаропрочных сталей и сплавов. К сварным соединениям высоколегированных сталей и сплавов кроме требований по пределу прочности, а также пластичности предъявляются и другие требования, которые определяются назначением конструкции и свойствами свариваемого металла. Эти требования следующие:

для коррозионностойких (нержавеющих) сталей - возможность противостоять межкристаллитной, общей жидкостной, ножевой коррозии под напряжением;

для окалиностойких сталей и сплавов - способность противостоять окалинообразованию и межкристаллитной газовой коррозии;

для жаропрочных сталей и сплавов - обеспечение длительной прочности, сопротивляемости ползучести, стабильности микроструктуры, стойкости против хрупкости при длительном воздействии высоких температур и нагрузок и малой чувствительности к надрезу и окалиностойкости.

Основными трудностями при сварке высоколегированных сталей и сплавов являются: обеспечение стойкости сварных соединений против образования кристаллизационных трещин, коррозионной стойкости, а также сохранения свойств соединений под действием рабочих температур и напряжений.

Сварка коррозйонностойких сталей. К коррозионностойким сталям относятся ОХ18НЮ, ОХ18НЮТ, Х18Н10Т, Х18Н9, Х18Н9Т, ОХ18Н12Т, ОХ18Н12Б, 1Х21Н5Т, ГХ16Н13Б, Х18Н12Т и др.

Стали ОХ18НЮТ, OX18HIO и Х18Н10Т сваривают электродами ОЗЛ-14, если к металлу шва предъявляются требования стойкости против межкристаллитной коррозии. Сварка этими электродами обеспечивает в сварном шве содержание ферритной фазы 6-10%.

Стали Х18Н9, Х18Н9Т сваривают электродами ОЗЛ-8, если к металлу шва не предъявляются требования стойкости против межкристаллитной коррозии или если сварное соединение будет эксплуатироваться при температуре до 350°С (при отсутствии агрессивных сред - при температуре от 253 до 800°С). Содержание ферритной фазы в сзарных швах колеблется от 3,5 до 8,5%.

Стали Х18Н10Т, Х18Н9Т, ОХ18Н12Т, ОХ18Н12Б, 1Х21Н5Т 1Х16Н13Б свариваются электродами ЦЛ-11, если к сварному шву предъявляются жесткие требования стойкости против межкристаллитной коррозии. Содержание ферритной фазы в сварных швах обеспечивается от 2,5 до 7%.

33. Технологические характеристики электродов для сварки теплоустойчивых сгалей

Сталь Х18Н12Т сваривают электродами ЦТ-15-1 (корневой шов), сварное соединение будет эксплуатироваться при температуре 600 - 650°С и высоком давлении. Содержание ферритной фазы в сварных швах колеблется от 5,5 до 9%.

Стали Х18Н10Т, Х18Н9Т сваривают электродами ЗИО-З, если сварные швы будут эксплуатироваться при температуре до 560°С или если к металлу шва будут предъявлены требования стойкости против межкристаллитной коррозии. Содержание ферритной фазы в сварном шве регламентируется от 2,5 до 5 %. Технологические свойства электродов для сварки коррозионностойких сталей приведены в табл. 34.

Сварка жаростойких сталей. К ним относятся Х25Т, Х28, Х23Н18, Х23Н13, Х20Н14С2, Х25Н20С2 и др.

Стали Х25Т и Х28 сваривают электродами 03JI-6, если сварные изделия будут эксплуатироваться при температуре 1150°С (без циклических резких изменений и в средах, не содержащих сернистый газ). Сварку выполняют короткой дугой. Кромки подготавливают под сварку только механическим способом. Содержание ферритной фазы регламентируется от 2,5 до 10%.

Стали Х23Н18, Х25Т и Х28 сваривают электродами ЦЛ-25, если сварные изделия будут эксплуатироваться при температуре выше 850°С. Сварку выполняют валиками, имеющими ширину не более трех диаметров электрода. Кратеры заплавляют частыми короткими замыканиями. Содержание ферритной фазы регламентируется от 3 до 9%.

Стали Х25Т, Х28, Х23Н13, Х23Н18, находящиеся в эксплуатации при температуре 900-1100°С, сваривают электродами ОЗЛ-4. Сварку выполняют предельно короткой дугой. Кромки обрабатывают под сварку только механическим способом. Содержание ферритной фазы регламентируется от 2,5 до 8%.

Стали Х23Н18, Х23Н13, находящиеся в эксплуатации в окислительных и науглероживающих средах при температуре 900- 1050°С, сваривают электродами ОЗЛ-9А. При сварке этих сталей особенно необходимо следить за недопустимостью появления трещин в кратерах. Ферритная фаза отсутствует и ГОСТом не нормируется. Сварные швы недостаточно стойки против межкристаллитной коррозии.

Стали Х20Ы14С2, Х25Н20С2, работающие при температуре до 1050°С, сваривают электродами ГС-1 (первый слой). Жаростойкость наплавленного металла до 1150°С.

Стали Х20Н14С2, Х25Н20С2, работающие при температуре 900-1100°С, сваривают электродами ОЗЛ-5. Кромки подготовляют под сварку только механическим способом. Сварные швы устойчивы против образования горячих трещин. Сталь Х20Н14С2, находящуюся в эксплуатации при температуре 900-1100°С, можно также сваривать электродами ЦТ-17 при наложении швов небольшой ширины - не более 3 диаметров электрода. Технологические характеристики электродов для сварки жаростойких сталей приведены в табл. 35.

34. Техно логические характеристики электродов для сварки коррозионностойких сталей 35. Технологические характеристики электродов для сварки жаростойких сталей 36. Технологические характеристики электродов для сварки жаропрочных сталей и сплавов

Сварка жаропрочных сталей и сплавов. К сталям этой группы относятся 1Х16Н14В2БР, 1Х16Н16В2МЕР, 1Х14Н14В2М, 4Х14Н14В2М, 1Х16Н13М2Б, 1Х14Н14В2М, Х18Н12Т, Х23Н13, Х23Н18, ХН35ВТ и др.

Стали 1Х16Н14В2БР и 1Х16Н16В2МБР сваривают электродами ЦТ-16-1. Кратеры заваривают короткими замыканиями электродов. Эти же стали сваривают электродами ЦТ-16, если изделия эксплуатируются при температуре до 700°С.

Стали 1Х14Н14В2М и 4Х14Н14В2М, работающие в условиях температуры до 600°С, сваривают электродами ЦТ-1. Сварные швы устойчивы против образования горячих трещин.

Стали 1Х16Н13М2Б, 1Х14Н14В2М и Х18Н12Т, работающие в условиях температуры до 620°С, сваривают электродами ЦТ-7. Горячие трещины в сварных швах устраняются достижением ферритной фазы от 2 до 5 %. После сварки применяют отжиг при 750- 800 °С в течение 10 ч.

Стали Х23Н13, Х23Н18, работающие в условиях температуры до 1050°С, сваривают электродами 03Л-9. Огневая подготовка кромок под сварку не допускается. При многослойной сварке швы необходимо выполнять электродами 03Л-9 через слой, наплавленный электродами 03Л-4, 03Л-5, 03Л-6 и ГС-1. Сплавы на железо-никелевой основе ХН35ВТ свариваются электродами КТИ-7-62.

Технологические характеристики электродов для сварки жаропрочных сталей и сплавов приведены в табл. 36.

Вопросы для самопроверки

  1. Каковы особенности сварки низколегированных конструктивных сталей?
  2. Почему легированные стали необходимо сваривать короткой дугой?
  3. В чем заключается особенность сварки теплоустойчивых сталей?

metallurgu.ru

Сварка легированных сталей

При соединении заготовок с определёнными параметрами главной задачей является сохранение структуры и свойств материала в зоне сварного шва. При нарушении температурного режима могут возникнуть кристаллизационные трещины и поры, что приводит к потере качества соединения. Чтобы избежать негативных последствий, сварку легированных сталей производят определёнными электродами с соблюдением температурного цикла, который позволяет избежать потери качества. Мы расскажем о технологических приёмах и особенностях при работе с этими материалами.

Типы сталей с добавками и их свойства

С помощью легирующих добавок сплаву придают определённые качества такие, как жаростойкость, низкая степень коррозии, стойкость к ударным нагрузкам и к воздействию агрессивных сред. В этих сплавах имеются различные химические элементы и их процентное содержание и определяет качество металла. В них присутствуют хром, никель, вольфрам, ванадий, марганец, ниобий и титан, а также их сочетания, определяющие степень характерных физических качеств. В итоге содержание примесей в определённых процентных долях и определяет свариваемость легированной стали определённой марки. По заданным физическим свойствам и химическому составу этот вид материалов делится на следующие виды:

  1. низколегированные марки, в которых присутствие примесей не превышает 2,5%, при этом содержание углерода в металле не учитывается;
  2. металл среднелегированного состава, где добавочные элементы занимают от 2,5% до 10% состава металла;
  3. высоколегированная сталь, с содержанием более, чем 10% специальных элементов.

При сварке этого вида металлов крайне важно максимально точно знать марку стали, чтобы получить высококачественный, прочный и долговечный шов без нарушения структуры материала заготовок.

Зависимость свариваемости деталей, которые легированы низким и средним количеством химических добавок, от содержания углерода, кремния и марганца подразумевает использование электродов определённого вида. Также необходима зачистка стыков от загрязнений и следов коррозии, обязательным является цикл прокаливания электродов до 400о С, и нагрев заготовок до 200о С. Сплав с высоким легированием должен соединяться с низкой величиной сварочных токов, во избежание перегрева исходных материалов.

Технологические особенности сварки специфических сталей

Соединение специальных металлов требует особого подхода, который позволит избежать перегрева заготовок в зоне шва и потери качеств соединения путём вывода из него необходимых компонентов. Здесь необходимо использование электродов или сварочной проволоки с особыми свойствами и химическим составом. Кроме того, существуют такие технические решения, как плазменная сварка, которая обеспечивает прочность только в зоне шва, без перегрева близлежащей толщи металла. Таким образом, качественная сварка легированных сталей может осуществляться разнообразными способами. ешения низкой свариваемости сплавов с особыми свойствами относится:

Способы сварки легированных составов зависят от марки и подразумевают использование дозированных сварочных токов, температурных режимов подготовки заготовок, а также химического состава покрытых электродов или сварочной проволоки. Эти решения подробно описаны в руководстве по соединению подобных деталей в соответствии с их свойствами.

Итог

Технология сварки легированных сталей не является особенно сложной, если соблюдать соответствие состава заготовок и сварочного режима. Эти методики описаны в ГОСТах и руководствах достаточно подробно, поэтому следуя им можно получить качественное и долговечное соединение этого вида материалов.

Сергей Одинцов

electrod.biz


Смотрите также